Independent Component Analysis of Electroencephalographic Data
نویسندگان
چکیده
Because of the distance between the skull and brain and their different resistivities, electroencephalographic (EEG) data collected from any point on the human scalp includes activity generated within a large brain area. This spatial smearing of EEG data by volume conduction does not involve significant time delays, however, suggesting that the Independent Component Analysis (ICA) algorithm of Bell and Sejnowski [1] is suitable for performing blind source separation on EEG data. The ICA algorithm separates the problem of source identification from that of source localization. First results of applying the ICA algorithm to EEG and event-related potential (ERP) data collected during a sustained auditory detection task show: (1) ICA training is insensitive to different random seeds. (2) ICA may be used to segregate obvious artifactual EEG components (line and muscle noise, eye movements) from other sources. (3) ICA is capable of isolating overlapping EEG phenomena, including alpha and theta bursts and spatially-separable ERP components, to separate ICA channels. (4) N onstationarities in EEG and behavioral state can be tracked using ICA via changes in the amount of residual correlation between ICA-filtered output channels. 146 S. MAKEIG, A. l . BELL, T.-P. lUNG, T. l. SEJNOWSKI
منابع مشابه
Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملComplex Spectral-domain Independent Component Analysis of Electroencephalographic Data
Independent component analysis (ICA) has proved to be a highly useful tool for modeling brain data and in particular electroencephalographic (EEG) data. In this paper, a new method is presented that may better capture the underlying source dynamics than ICA algorithms hereto employed for brain signal analysis. We suppose that a brief, impulse-like activation of an effective signal source elicit...
متن کاملRemoving Electroencephalographic Artifacts : Comparison between Ica and Pca
Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals , and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of an Independent Component Analysis (ICA) algorithm 2, 12] for pe...
متن کاملComplex independent component analysis of frequency-domain electroencephalographic data
Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a...
متن کاملBlind source separation by independent component analysis applied to electroencephalographic signals
Independent Component Analysis (ICA) is a statistical based method, which goal is to find a linear transformation to apply to an observed multidimensional random vector such that its components become as statistically independent from each other as possible. Usually the Electroencephalographic (EEG) signal is hard to interpret and analyse since it is corrupted by some artifacts which originates...
متن کامل